39 research outputs found

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    Potential applications of nanotechnology in thermochemical conversion of microalgal biomass

    Get PDF
    The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed

    Planck 2015 results. XX. Constraints on inflation

    Get PDF
    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n s = 0.968 ± 0.006 and tightly constrain its scale dependence to dn s /dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the high-ℓ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is r 0.002 <0.11 (95% CL), consistent with the B-mode polarization constraint r<0.12 (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that V(ϕ)∝ϕ 2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R 2 inflation. Three independent methods reconstructing the primordial power spectrum are investigated. The Planck data are consistent with adiabatic primordial perturbations. We investigate inflationary models producing an anisotropic modulation of the primordial curvature power spectrum as well as generalized models of inflation not governed by a scalar field with a canonical kinetic term. The 2015 results are consistent with the 2013 analysis based on the nominal mission data

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors

    No full text
    We combine nanometer-scale polymer self assembly With advanced semiconductor microfabrication to produce metaloxide-semiconductor (MOS) capacitors with accumulation capacitance more than 400% higher than planar devices of the same lateral area. The-self assembly technique achieves this degree of enhancement using only standard processing techniques, thereby obviating additional process complexity. These devices are suitable for use as on-chip power supply decoupling capacitors, particularly in high-performance silicon-on-insulator technology.X1175sciescopu

    Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content

    Get PDF
    To deter and punish illegal collusions antitrust authorities run costly investigations and levy fines on detected and convicted wrongdoers. According to Becker (1968) the magnitude of fines and the detection rates are substitutable in their deterrence effect. We investigate this proposition through a market experiment, and study the effects of different fine and detection rate combinations (with constant expected fines) on cartel activity, prices and cartel stability. Our results show that in the absence of a leniency program, complying with the Beckerian Proposition, detection rates and fines are indeed substitutable in deterring cartels. With a leniency program, however, due to behavioral bias a regime that embodies low detection rate and high fine lowers the overall incidence of cartelization. The market price in this regime is also significantly lower than in a high detection rate low fine regime. Finally, irrespective of the presence of a leniency program, the different detection rate – fine combinations do not affect the cartel stability. These findings indicate that antitrust agencies can rely on behavioral biases to economize on enforcement costs and achieve a higher degree of deterrence by reducing investigative efforts and increasing the fine level
    corecore